If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2=95
We move all terms to the left:
36x^2-(95)=0
a = 36; b = 0; c = -95;
Δ = b2-4ac
Δ = 02-4·36·(-95)
Δ = 13680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13680}=\sqrt{144*95}=\sqrt{144}*\sqrt{95}=12\sqrt{95}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{95}}{2*36}=\frac{0-12\sqrt{95}}{72} =-\frac{12\sqrt{95}}{72} =-\frac{\sqrt{95}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{95}}{2*36}=\frac{0+12\sqrt{95}}{72} =\frac{12\sqrt{95}}{72} =\frac{\sqrt{95}}{6} $
| 4v+2=6v–8 | | (x-7)/x=86/100 | | 28x12=336 | | 36/45=4/x | | 20=6x4 | | 60/x=5/6 | | 11x+12=-4+13x=180 | | 7x+16=-26 | | 2x^2+6x+12=6-2x | | 2(x-3)-19=-29 | | 4(x+9)-12=-12 | | 9(x-12)-10=-28 | | 1(x+6)-18=-11 | | 7(x+10)=126 | | 8(x+16)-5=187 | | 50x680=130 | | 6(x-9)-18=-72 | | 8(x+6)+11=59 | | 3(x-16)-6=-33 | | 6(x+14)-8=106 | | 5x-(4-x)=1-5(1-7x) | | 7x+6=6x+17=180 | | 3y-15=48 | | 21-8v=7-6(v=3) | | 3(x+9)=-3 | | -(k-1)=4(-4k+4) | | 8(x-3)-16=16 | | {2}{5}(j+40)=-4 | | 3(x+2)+6=-6 | | y=225/9y | | -(k-1)=4(-4k=4) | | 6(x+4)+14=62 |